斗牛牛游戏

    1. <form id='g4599'></form>
        <bdo id='g4599'><sup id='g4599'><div id='g4599'><bdo id='g4599'></bdo></div></sup></bdo>

          • 产品中心
            您的位置:首页 > 产品中心 > 应用领域
            生物3D打印机

                   产品简介

                   作为国际领先的生物3D打印综合解决方案供应商,捷诺飞对生物3D打印材料特性,打印过程中对细胞生存环境的控制、打印组织功能诱导等有着系统的经验和深刻的理解。由此,斗牛牛游戏提供PRO、WS等满足不同研究和应用方向的系列装备平台,拓宽实验思路,丰富研究方案。

                  设备拥有Distributed-TC®温控系统,模块化喷头系统,Regen-MTS®多喷头切换系统,软件控制系统等设计,具备多项核心专利,处于全球领先水平。Regenovo 3D Bio-Architect®装备打印生物材料兼容性强,打印活细胞存活率高,具备高精度、高扩展、高洁净、多通道、易操作、打印方式多样化等特点。    

                  系列型号

            l   Bio-Architect®-Pro

            l   Bio-Architect®-WS

            l   Bio-Architect®-X


            产品特点 

            高精度 高扩展 高洁净 系统支持丰富精准的打印

            生物材料兼容性广

            l   细胞系与细胞株

            胚胎干细胞(ESC)、脂肪干细胞(ADSC)、间充质干细胞(MSC)、肝细胞(Hepatocytes)、肿瘤细胞(Tumor cell)等;

            l   天然生物材料

            明胶(Gelatin)、藻朊酸盐(Alginate)、纤维蛋白(Fibrin)、胶原(Collagen)、琼脂糖(Agarose)、聚氨基葡萄糖(Chitosan)、丝素蛋白(Silk fibroin)等

            l   高分子材料

            聚乳酸(PLA)、乳酸-羟基乙酸共聚物(PLGA)、聚己内酯(PCL)、羟基丁酸酯-羟基戊酸酯共聚物(PHBV)、聚对二氧环己酮(PPDO)等

            l   生物无机材料

            羟基磷灰石(Hydroxyapatite)、磷酸三钙(Tricalcium phosphate)、珍珠质(Nacre)等


            构建复杂 · 精细结构

             












            支持活细胞3D打印 细胞存活率高




            近年相关学术成果

            1) Lei Z, Wang Q, Wu P. A Multifunctional Skin-like Sensor Based on a Printable and Thermo responsive Hydrogel[J]. Materials Horizons, 2017.

            2) Kai Huang, Jinshan Yang, Shaoming Dong, Jianbao Hu, et al. Anisotropy of graphene scaffolds assembled by three-dimensional printing[J]. Carbon, 2017.

            3) Lan Li, Fei Yu, Jianping Shi, Qing Jiang, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing[J]. Scientific Reports, 2017, 7: 9416

            4) Zhong Cheng, Zhang Chi, Du Jingyu, Lin Xiangjin, et al. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG[J]. Materials Science and Engineering: C, 2017.

            5) Jin Yipeng, Xu Yongde, Gao Jiangping, Yang Yong, et al. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting[J]. Frontiers in Physiology, 2017.

            6) Yang X, Lu Z, Zhao J M, et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering[J]. Materials Science and Engineering: C, 2017.    

            7) Chui-Wei Wong, You-Tzung Chen, Shan-hui Hsu, et al. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting[J]. Materials Science and Engineering: C, 2017.

            8) Chao-Ting Huang, Lok Kumar Shrestha, Katsuhiko Ariga, Shan-hui Hsu, et al. A graphene polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells[J]. Journal of Materials Chemistry B, 2017.

            9) Chen C, Zhao M, Li X H, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats[J]. Journal of Biomedical Materials Research Part A, 2017. 

            10) Xiaoheng Guo, Huichang Gao, Wang Y J, et al. Porous Li-containing biphasic calcium phosphate scaffolds fabricated by three-dimensional plotting for bone repair[J]. RSC Advances, 2017.

            11) Fu F, Qin Z, Li X H, et al. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering[J]. Neural regeneration research, 2017.

            12) Zou F, Zhao N, Wang Y J, et al. Enhanced osteogenic differentiation and biomineralization in mouse mesenchymal stromal cells on a β-TCP robocast scaffold modified with collagen nanofibers[J]. Rsc Advances, 2016. 

            13) Huang S, Yao B, FU X B, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta biomaterialia, 2016, 32: 170-177.    

            14) Liu N, Huang S, FU X B, et al. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland[J]. Scientific Reports, 2016, 6:34410.

            15) Cheng Z, Runzhou Z, Zheng S S, et al. 3D Printing of Differentiated Bone Marrow Mesenchymal Cells as a New Method for Liver Tissue Engineering[J]. Journal of Biomaterials and Tissue Engineering, 2016. 

            16) Wang L, Xu M, Zhang L, et al. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography[J]. Biomedical Optics Express, 2016. 

            17) Lin H H, Hsieh F Y, Hsu S H, et al. Preparation and characterization of biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting[J]. Journal of Materials Chemistry B, 2016.

            18) Zhong C, Xie H Y, Zheng S S, et al. Human hepatocytes loaded in 3D bioprinting generate mini-liver[J]. Hepatobiliary & Pancreatic Diseases International, 2016. 


            技术资料获取

            如需获取更多捷诺飞生物3D打印装备相关技术资料,可以通过微信扫描以下二维码留下您的信息,斗牛牛游戏将会有专业技术人员与您联系;或者通过以下捷诺飞官方联系方式获取:

            市场热线:0571-85788536/技术专员:+86 15268103264

            官方邮箱:consult@regenovo.com